【数仓项目】百尺竿头,更进一步-dwd层构建

本文主要介绍dwd层数据构建


start处理
建表:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
hive (gmall)>
drop table if exists dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`open_ad_type` string,
`action` string,
`loading_time` string,
`detail` string,
`extend1` string
)
PARTITIONED BY (dt string)
location '/warehouse/gmall/dwd/dwd_start_log/';

导入数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
insert overwrite table dwd_start_log
PARTITION (dt='2019-02-10')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from ods_start_log
where dt='2019-02-10';

难点:event部分:

由于ods_event_log数据是日志数据,结构复杂,是json嵌套结构,所以需要自己定义一个udf和一个udtf函数来对其进行导入数据处理

先 建表:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
drop table if exists dwd_base_event_log;
CREATE EXTERNAL TABLE dwd_base_event_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`event_name` string,
`event_json` string,
`server_time` string)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_base_event_log/';

函数编写:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
maven:
<properties>
<project.build.sourceEncoding>UTF8</project.build.sourceEncoding>
<hive.version>1.2.1</hive.version>
</properties>

<dependencies>
<!--添加hive依赖-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>${hive.version}</version>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

UDF:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
package com.sumiya.udf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.json.JSONException;
import org.json.JSONObject;

public class BaseFieldUDF extends UDF {
public String evaluate(String line,String jsonkeysString) {

StringBuilder sb = new StringBuilder();

//1.获取所有key,比如mid,uv,extend1等等
String[] jsonkeys = jsonkeysString.split(",");

//2.切割 服务器时间|json
String[] logContents = line.split("\\|");

//3.校验
if (logContents.length != 2 || StringUtils.isBlank(logContents[1])) {
return "";
}


try {
//4.对logContent创建json
JSONObject jsonObject = new JSONObject(logContents[1]);

//5.获取公共字段的json对象
JSONObject cmJson = jsonObject.getJSONObject("cm");
//6.循环遍历
for (String jsonkey : jsonkeys) {
jsonkey = jsonkey.trim();
if(cmJson.has(jsonkey)){
sb.append(cmJson.getString(jsonkey)).append("\t");
}else{
sb.append("\t");
}
}
//7.拼接事件字段和服务器时间
sb.append(jsonObject.getString("et")).append("\t");
sb.append(logContents[0]).append("\t");
} catch (JSONException e) {
e.printStackTrace();
}
return sb.toString();
}

//测试代码
public static void main(String[] args) {

String line = "1541217850324|{\"cm\":{\"mid\":\"m7856\",\"uid\":\"u8739\",\"ln\":\"-74.8\",\"sv\":\"V2.2.2\",\"os\":\"8.1.3\",\"g\":\"P7XC9126@gmail.com\",\"nw\":\"3G\",\"l\":\"es\",\"vc\":\"6\",\"hw\":\"640*960\",\"ar\":\"MX\",\"t\":\"1541204134250\",\"la\":\"-31.7\",\"md\":\"huawei-17\",\"vn\":\"1.1.2\",\"sr\":\"O\",\"ba\":\"Huawei\"},\"ap\":\"weather\",\"et\":[{\"ett\":\"1541146624055\",\"en\":\"display\",\"kv\":{\"goodsid\":\"n4195\",\"copyright\":\"ESPN\",\"content_provider\":\"CNN\",\"extend2\":\"5\",\"action\":\"2\",\"extend1\":\"2\",\"place\":\"3\",\"showtype\":\"2\",\"category\":\"72\",\"newstype\":\"5\"}},{\"ett\":\"1541213331817\",\"en\":\"loading\",\"kv\":{\"extend2\":\"\",\"loading_time\":\"15\",\"action\":\"3\",\"extend1\":\"\",\"type1\":\"\",\"type\":\"3\",\"loading_way\":\"1\"}},{\"ett\":\"1541126195645\",\"en\":\"ad\",\"kv\":{\"entry\":\"3\",\"show_style\":\"0\",\"action\":\"2\",\"detail\":\"325\",\"source\":\"4\",\"behavior\":\"2\",\"content\":\"1\",\"newstype\":\"5\"}},{\"ett\":\"1541202678812\",\"en\":\"notification\",\"kv\":{\"ap_time\":\"1541184614380\",\"action\":\"3\",\"type\":\"4\",\"content\":\"\"}},{\"ett\":\"1541194686688\",\"en\":\"active_background\",\"kv\":{\"active_source\":\"3\"}}]}";
String x = new BaseFieldUDF().evaluate(line, "mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,nw,ln,la,t");
System.out.println(x);
}
}

UDTF:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
package com.sumiya.udtf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.json.JSONArray;
import org.json.JSONException;

import java.util.ArrayList;
import java.util.List;

public class EventJsonUDTF extends GenericUDTF {

@Deprecated
public StructObjectInspector initialize(ObjectInspector[] argOIs)
throws UDFArgumentException {
List<String> filedNames = new ArrayList<>();
List<ObjectInspector> filedType = new ArrayList<>();

filedNames.add("event_name");
filedType.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
filedNames.add("event_json");
filedType.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

return ObjectInspectorFactory.getStandardStructObjectInspector(filedNames,filedType);
}

@Override
public void process(Object[] objects) throws HiveException {
//获取输入数据
String input = objects[0].toString();

if(StringUtils.isBlank(input)){
return ;
}else{
try {
JSONArray ja = new JSONArray(input);
if(ja==null){
return;
}
for(int i = 0;i<ja.length();i++){
String[] results = new String[2];
try {
results[0] = ja.getJSONObject(i).getString("en");
results[1] = ja.getString(i);
} catch (JSONException e) {
e.printStackTrace();
continue;
}
forward(results);
}

} catch (JSONException e) {
e.printStackTrace();

}

}
}

@Override
public void close() throws HiveException {

}
}

打包好去hive导入jar包建立函数以编写导入代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table dwd_base_event_log
PARTITION (dt='2019-02-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
event_name,
event_json,
server_time
from
(
select
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[0] as mid_id,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[1] as user_id,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[2] as version_code,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[3] as version_name,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[4] as lang,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[5] as source,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[6] as os,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[7] as area,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[8] as model,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[9] as brand,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[10] as sdk_version,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[11] as gmail,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[12] as height_width,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[13] as app_time,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[14] as network,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[15] as lng,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[16] as lat,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[17] as ops,
split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[18] as server_time
from ods_event_log where dt='2019-02-10' and base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la')<>''
) sdk_log lateral view flat_analizer(ops) tmp_k as event_name, event_json;

至此即为这个阶段最关键重要的步骤。
其他枯燥的建表插入环节就不再赘述(十张表,不断地从dwd_base_event_log换字段创建插入,属实枯燥,不过真的很佩服能设计出10张表完成数仓基本功能的数据库设计师)
这里附上一键插入shell脚本,表的话该创害得自己去按照需求创

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
dwd_event_log.sh
#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi

sql="
set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table "$APP".dwd_display_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.place') place,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.category') category,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='display';


insert overwrite table "$APP".dwd_newsdetail_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.showtype') showtype,
get_json_object(event_json,'$.kv.news_staytime') news_staytime,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.type1') type1,
get_json_object(event_json,'$.kv.category') category,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='newsdetail';


insert overwrite table "$APP".dwd_loading_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.loading_way') loading_way,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.extend2') extend2,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.type1') type1,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='loading';


insert overwrite table "$APP".dwd_ad_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.content') content,
get_json_object(event_json,'$.kv.detail') detail,
get_json_object(event_json,'$.kv.source') ad_source,
get_json_object(event_json,'$.kv.behavior') behavior,
get_json_object(event_json,'$.kv.newstype') newstype,
get_json_object(event_json,'$.kv.show_style') show_style,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='ad';


insert overwrite table "$APP".dwd_notification_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.noti_type') noti_type,
get_json_object(event_json,'$.kv.ap_time') ap_time,
get_json_object(event_json,'$.kv.content') content,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='notification';


insert overwrite table "$APP".dwd_active_foreground_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.push_id') push_id,
get_json_object(event_json,'$.kv.access') access,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='active_foreground';


insert overwrite table "$APP".dwd_active_background_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.active_source') active_source,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='active_background';


insert overwrite table "$APP".dwd_comment_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.comment_id') comment_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.p_comment_id') p_comment_id,
get_json_object(event_json,'$.kv.content') content,
get_json_object(event_json,'$.kv.addtime') addtime,
get_json_object(event_json,'$.kv.other_id') other_id,
get_json_object(event_json,'$.kv.praise_count') praise_count,
get_json_object(event_json,'$.kv.reply_count') reply_count,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='comment';


insert overwrite table "$APP".dwd_favorites_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.course_id') course_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='favorites';


insert overwrite table "$APP".dwd_praise_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.target_id') target_id,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='praise';


insert overwrite table "$APP".dwd_error_log
PARTITION (dt='$do_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.errorBrief') errorBrief,
get_json_object(event_json,'$.kv.errorDetail') errorDetail,
server_time
from "$APP".dwd_base_event_log
where dt='$do_date' and event_name='error';
"

$hive -e "$sql"

×

纯属好玩

扫码支持
谢谢你

打开支付宝扫一扫,即可进行扫码打赏哦

文章目录
  1. 1. 难点:event部分:
,